Finding Domain-based Expert for Improving Collaborative Filtering Algorithm
نویسندگان
چکیده
Traditional neighborhood-based collaborative filtering algorithms are widely used in recommender system field for its accuracy, interpretability and operability. In this paper, we introduce expert user model into collaborative filtering and determine authoritative expert users via expert finding methods in large corpus. We propose a method to produce predications for target user. Instead of the similarity between normal users and target user, we determine target user’s neighborhood based on the similarity be-tween expert users and target user. Experiments on Amazon datasets show that our method has better performance than neighbor-hood-based collaborative filtering on recommendation accuracy, novelty and calculation efficiency.
منابع مشابه
یک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملReversed CF: A fast collaborative filtering algorithm using a k-nearest neighbor graph
User-based and item-based collaborative filtering (CF) methods are two of the most widely used techniques in recommender systems. While these algorithms are widely used in both industry and academia owing to their simplicity and acceptable level of accuracy, they require a considerable amount of time in finding top-k similar neighbors (items or users) to predict user preferences of unrated item...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015